用骰子選人當鬼 - 拼圖

By Edwina
at 2012-11-30T14:31
at 2012-11-30T14:31
Table of Contents
我們也同時可以證明保證有限次完成的方法是不存在的
考慮 Si, 因為我們只能丟有限次骰子,
Si = {a_1, a_2, ..., a_n} ,n 是一個有限的數,a_j 的長度也是有限的,
sum (p(a_i)) = 1/7 and p(a_i) = 6^k for some k in Z
=> sum (p(a_i)) = Q/6^K for some Q, K in Z
Q/6^K = 1/7 => 7Q = 6^K => 7 | 6^K 矛盾
就算我們可以混用 B大 的八個邊 (可以產生 1/8) 也沒用,
因為 sum(p(a_i)) = Q/(6^A * 8^B) , 6^A * 8^B mod 7 != 0
不過,如果要求大家一定要玩 7n 場的話,可以有變通的方法,
在第 t = 7k + i 場,讓第 i 個人一定不用當鬼,剩下的人每個各 1/6
第 i 個小孩當鬼的機率是 sum (P(i | t = 7k+i) * P(t = 7k + i)) = 1/7
當然,這樣做只是讓期望值保持 1/7 ,機率分佈其實已經被改變了。
--
Tags:
拼圖
All Comments

By Una
at 2012-12-04T18:38
at 2012-12-04T18:38

By David
at 2012-12-04T22:12
at 2012-12-04T22:12
Related Posts
用骰子選人當鬼

By Jacob
at 2012-11-29T20:31
at 2012-11-29T20:31
用骰子選人當鬼

By Victoria
at 2012-11-29T12:40
at 2012-11-29T12:40
Puzzleup 2012 (19) Palindromic Number

By Faithe
at 2012-11-28T19:17
at 2012-11-28T19:17
圓形七巧板的廠牌

By Emily
at 2012-11-28T13:40
at 2012-11-28T13:40
灌鉛的骰子

By Tristan Cohan
at 2012-11-28T00:57
at 2012-11-28T00:57