ProjectEuler 439 Sum of sum of divisor - 拼圖
By Gary
at 2013-10-07T04:59
at 2013-10-07T04:59
Table of Contents
439. Sum of sum of divisors
http://projecteuler.net/problem=439
令d(k)為k的所有正因數的和。
我們定義S(N) = Σd(ij)對1≦i≦N,1≦j≦N的和。
例如,S(3) = d(1) + d(2) + d(3) + d(2) + d(4) + d(6) + d(3) + d(6) + d(9) = 59
已知S(10^3) = 563576517282以及S(10^5) mod 10^9 = 215766508。
請求出S(10^11) mod 10^9。
--
http://projecteuler.net/problem=439
令d(k)為k的所有正因數的和。
我們定義S(N) = Σd(ij)對1≦i≦N,1≦j≦N的和。
例如,S(3) = d(1) + d(2) + d(3) + d(2) + d(4) + d(6) + d(3) + d(6) + d(9) = 59
已知S(10^3) = 563576517282以及S(10^5) mod 10^9 = 215766508。
請求出S(10^11) mod 10^9。
--
Tags:
拼圖
All Comments
By Edith
at 2013-10-11T05:10
at 2013-10-11T05:10
By Andrew
at 2013-10-13T05:23
at 2013-10-13T05:23
By Valerie
at 2013-10-13T18:31
at 2013-10-13T18:31
By Agnes
at 2013-10-16T07:52
at 2013-10-16T07:52
By Xanthe
at 2013-10-20T17:31
at 2013-10-20T17:31
By Eden
at 2013-10-21T14:05
at 2013-10-21T14:05
By Olive
at 2013-10-22T11:38
at 2013-10-22T11:38
Related Posts
ProjectEuler 438 Integer part of polyn
By Emily
at 2013-09-30T12:44
at 2013-09-30T12:44
找一幅 撐傘 的拼圖
By Carol
at 2013-09-28T22:56
at 2013-09-28T22:56
ProjectEuler 437 Fibonacci primitive r
By Jack
at 2013-09-26T13:53
at 2013-09-26T13:53
Puzzleup 2013 (10) Plastic Digits
By Steve
at 2013-09-26T01:21
at 2013-09-26T01:21
ilovepuzzle
By Heather
at 2013-09-24T20:36
at 2013-09-24T20:36