開黃泉後盤面五屬珠都>=3顆的機率 - 神魔之塔

By Freda
at 2017-09-10T14:58
at 2017-09-10T14:58
Table of Contents
※ 引述《znmkhxrw (QQ)》之銘言:
: 大家好(‧^ω^‧)
: 剛剛狂日大大問了個 TOS-MATH 問題如題
: 正常關卡(非禁珠)下開黃泉洗珠,每一屬(不含心)都≧3顆的機率是?
答案:0.544634557955
---------------------------------------
原本認為手算就算捏爛LP也算不出來
不過在今天早上先捏一下下後,發現其實很多項可以couple在一起(‧^ω^‧)
接著再藉由計算網頁就得到許多網友跑程式的結果了
【問題】
假設全版洗盤後版面是平均分布六色珠(含自消盤面),那五屬性各至少3顆以上機率是?
【答案】
分母 = 全部盤面 = 6^30 = 221073919720733357899776
分子 = 五屬性各至少3顆
= 全部盤面 - 至少有一屬≦2顆
= 221073919720733357899776 - 100669423178347649484640
= 120404496542385708415136
機率 = 分子/分母 = 0.544634557955
【證明】
令 S為所有盤面所成的集合
#(any set) := 此集合的元素個素
令 A 為水珠≦2顆的盤面所成的集合
A_1為水珠=2顆的盤面所成的集合
A_2為水珠=1顆的盤面所成的集合
A_3為水珠=0顆的盤面所成的集合
則 A=A_1∪A_2∪A_3, 且三者互斥(兩兩交集為空集合)
同樣的令出 B(火), C(木), D(光), E(暗)
因此我們所求的"五屬珠至少有一屬≦2顆"
其實就是 #(A∪B∪C∪D∪E)
之後根據排容原理
#(A∪B∪C∪D∪E)
= Σ#(單一集合) - Σ#(兩兩交集) + Σ#(三三交集) - Σ#(四四交集) + Σ#(全交集)
接著觀察到A,B,C,D,E是對稱的
因此每個Σ內只要算一次,之後乘上交集可能方法數即可,具體如下:
(1) Σ#(單一集合) = C(5,1) * #(A)
(2) Σ#(兩兩交集) = C(5,2) * #(A∩B)
(3) Σ#(三三交集) = C(5,3) * #(A∩B∩C)
(4) Σ#(四四交集) = C(5,4) * #(A∩B∩C∩D)
(5) Σ#(全交集) = C(5,5) * #(A∩B∩C∩D∩E)
最後,就是分別計算以下項目:(" ** "代表次方" ^ ")
(a) #(A) = #(A_1) + #(A_2) + #(A_3)
= c(30,2)*5**28+c(30,1)*5**29+5**30
(b) #(A∩B) = #(A_1∩B_1) + #(A_1∩B_2) + #(A_1∩B_3)
+ #(A_2∩B_1) + #(A_2∩B_2) + #(A_2∩B_3)
+ #(A_3∩B_1) + #(A_3∩B_2) + #(A_3∩B_3)
= c(30,4)*c(4,2)*4**26+c(30,2)*c(2,1)*4**28+4**30
+ 2*[c(30,3)*c(3,2)*4**27+c(30,2)*4**28+c(30,1)*4**29]
【紅色部分也是簡化關鍵,因為淺藍那兩個項一樣、綠色一樣、紫色一樣】
(c) #(A∩B∩C)
= c(30,6)*c(6,2)*c(4,2)*3**24+c(30,3)*c(3,1)*c(2,1)*3**27+3**30
+ 3*[ c(30,5)*c(5,2)*c(3,2)*3**25+c(30,4)*c(4,2)*3**26+c(30,2)*3**28
+c(30,2)*c(2,1)*3**28+c(30,1)*3**29]
+ 6*[c(30,3)*c(3,2)*3**27]
(d) #(A∩B∩C∩D)
= c(30,8)*c(8,2)*c(6,2)*c(4,2)*2**22+c(30,4)*c(4,1)*c(3,1)*c(2,1)*2**26+2**30
+ 4*[ c(30,7)*c(7,2)*c(5,2)*c(3,2)*2**23+c(30,6)*c(6,2)*c(4,2)*2**24
+c(30,5)*c(5,2)*c(3,1)*c(2,1)*2**25+c(30,2)*2**28
+c(30,3)*c(3,1)*c(2,1)*2**27+c(30,1)*2**29]
+ 6*[ c(30,6)*c(6,2)*c(4,2)*c(2,1)*2**24+c(30,4)*c(4,2)*2**26
+c(30,2)*c(2,1)*2**28]
+ 12*[ c(30,5)*c(5,2)*c(3,2)*2**25+c(30,4)*c(4,2)*c(2,1)*2**26
+c(30,3)*c(3,2)*2**27]
(e) #(A∩B∩C∩D∩E)
= c(30,10)*c(10,2)*c(8,2)*c(6,2)*c(4,2)+c(30,5)*c(5,1)*c(4,1)*c(3,1)*c(2,1)+1
+ 5*[ c(30,9)*c(9,2)*c(7,2)*c(5,2)*c(3,2)+c(30,8)*c(8,2)*c(6,2)*c(4,2)
+c(30,6)*c(6,2)*c(4,1)*c(3,1)*c(2,1)+c(30,2)+c(30,4)*c(4,1)*c(3,1)*c(2,1)
+c(30,1)]
+ 10*[ c(30,8)*c(8,2)*c(6,2)*c(4,2)*c(2,1)+c(30,6)*c(6,2)*c(4,2)
+c(30,7)*c(7,2)*c(5,2)*c(3,1)*c(2,1)+c(30,4)*c(4,2)
+c(30,3)*c(3,1)*c(2,1)+c(30,2)*c(2,1)]
+ 20*[c(30,7)*c(7,2)*c(5,2)*c(3,2)+c(30,5)*c(5,2)*c(3,1)*c(2,1)+c(30,3)*c(3,2)]
+ 30*[c(30,6)*c(6,2)*c(4,2)*c(2,1)+c(30,5)*c(5,2)*c(3,2)+c(30,4)*c(4,2)*c(2,1)]
===========================================================================
最後一步了!藉由心算或是電腦計算即可得
#(A∪B∪C∪D∪E) = 100669423178347649484640
接著答案就是 [6^30-#(A∪B∪C∪D∪E)]/6^30
掐指一算 = 0.544634557955 (‧^ω^‧)
-------------------------------------------
說真的...按run的那瞬間好怕答案跟版友的程式解不一樣
我沒有勇氣回頭再check一次(╯°□°)╯ ~ /(_□_,,)\
--
: 大家好(‧^ω^‧)
: 剛剛狂日大大問了個 TOS-MATH 問題如題
: 正常關卡(非禁珠)下開黃泉洗珠,每一屬(不含心)都≧3顆的機率是?
答案:0.544634557955
---------------------------------------
原本認為手算就算捏爛LP也算不出來
不過在今天早上先捏一下下後,發現其實很多項可以couple在一起(‧^ω^‧)
接著再藉由計算網頁就得到許多網友跑程式的結果了
【問題】
假設全版洗盤後版面是平均分布六色珠(含自消盤面),那五屬性各至少3顆以上機率是?
【答案】
分母 = 全部盤面 = 6^30 = 221073919720733357899776
分子 = 五屬性各至少3顆
= 全部盤面 - 至少有一屬≦2顆
= 221073919720733357899776 - 100669423178347649484640
= 120404496542385708415136
機率 = 分子/分母 = 0.544634557955
【證明】
令 S為所有盤面所成的集合
#(any set) := 此集合的元素個素
令 A 為水珠≦2顆的盤面所成的集合
A_1為水珠=2顆的盤面所成的集合
A_2為水珠=1顆的盤面所成的集合
A_3為水珠=0顆的盤面所成的集合
則 A=A_1∪A_2∪A_3, 且三者互斥(兩兩交集為空集合)
同樣的令出 B(火), C(木), D(光), E(暗)
因此我們所求的"五屬珠至少有一屬≦2顆"
其實就是 #(A∪B∪C∪D∪E)
之後根據排容原理
#(A∪B∪C∪D∪E)
= Σ#(單一集合) - Σ#(兩兩交集) + Σ#(三三交集) - Σ#(四四交集) + Σ#(全交集)
接著觀察到A,B,C,D,E是對稱的
因此每個Σ內只要算一次,之後乘上交集可能方法數即可,具體如下:
(1) Σ#(單一集合) = C(5,1) * #(A)
(2) Σ#(兩兩交集) = C(5,2) * #(A∩B)
(3) Σ#(三三交集) = C(5,3) * #(A∩B∩C)
(4) Σ#(四四交集) = C(5,4) * #(A∩B∩C∩D)
(5) Σ#(全交集) = C(5,5) * #(A∩B∩C∩D∩E)
最後,就是分別計算以下項目:(" ** "代表次方" ^ ")
(a) #(A) = #(A_1) + #(A_2) + #(A_3)
= c(30,2)*5**28+c(30,1)*5**29+5**30
(b) #(A∩B) = #(A_1∩B_1) + #(A_1∩B_2) + #(A_1∩B_3)
+ #(A_2∩B_1) + #(A_2∩B_2) + #(A_2∩B_3)
+ #(A_3∩B_1) + #(A_3∩B_2) + #(A_3∩B_3)
= c(30,4)*c(4,2)*4**26+c(30,2)*c(2,1)*4**28+4**30
+ 2*[c(30,3)*c(3,2)*4**27+c(30,2)*4**28+c(30,1)*4**29]
【紅色部分也是簡化關鍵,因為淺藍那兩個項一樣、綠色一樣、紫色一樣】
(c) #(A∩B∩C)
= c(30,6)*c(6,2)*c(4,2)*3**24+c(30,3)*c(3,1)*c(2,1)*3**27+3**30
+ 3*[ c(30,5)*c(5,2)*c(3,2)*3**25+c(30,4)*c(4,2)*3**26+c(30,2)*3**28
+c(30,2)*c(2,1)*3**28+c(30,1)*3**29]
+ 6*[c(30,3)*c(3,2)*3**27]
(d) #(A∩B∩C∩D)
= c(30,8)*c(8,2)*c(6,2)*c(4,2)*2**22+c(30,4)*c(4,1)*c(3,1)*c(2,1)*2**26+2**30
+ 4*[ c(30,7)*c(7,2)*c(5,2)*c(3,2)*2**23+c(30,6)*c(6,2)*c(4,2)*2**24
+c(30,5)*c(5,2)*c(3,1)*c(2,1)*2**25+c(30,2)*2**28
+c(30,3)*c(3,1)*c(2,1)*2**27+c(30,1)*2**29]
+ 6*[ c(30,6)*c(6,2)*c(4,2)*c(2,1)*2**24+c(30,4)*c(4,2)*2**26
+c(30,2)*c(2,1)*2**28]
+ 12*[ c(30,5)*c(5,2)*c(3,2)*2**25+c(30,4)*c(4,2)*c(2,1)*2**26
+c(30,3)*c(3,2)*2**27]
(e) #(A∩B∩C∩D∩E)
= c(30,10)*c(10,2)*c(8,2)*c(6,2)*c(4,2)+c(30,5)*c(5,1)*c(4,1)*c(3,1)*c(2,1)+1
+ 5*[ c(30,9)*c(9,2)*c(7,2)*c(5,2)*c(3,2)+c(30,8)*c(8,2)*c(6,2)*c(4,2)
+c(30,6)*c(6,2)*c(4,1)*c(3,1)*c(2,1)+c(30,2)+c(30,4)*c(4,1)*c(3,1)*c(2,1)
+c(30,1)]
+ 10*[ c(30,8)*c(8,2)*c(6,2)*c(4,2)*c(2,1)+c(30,6)*c(6,2)*c(4,2)
+c(30,7)*c(7,2)*c(5,2)*c(3,1)*c(2,1)+c(30,4)*c(4,2)
+c(30,3)*c(3,1)*c(2,1)+c(30,2)*c(2,1)]
+ 20*[c(30,7)*c(7,2)*c(5,2)*c(3,2)+c(30,5)*c(5,2)*c(3,1)*c(2,1)+c(30,3)*c(3,2)]
+ 30*[c(30,6)*c(6,2)*c(4,2)*c(2,1)+c(30,5)*c(5,2)*c(3,2)+c(30,4)*c(4,2)*c(2,1)]
===========================================================================
最後一步了!藉由心算或是電腦計算即可得
#(A∪B∪C∪D∪E) = 100669423178347649484640
接著答案就是 [6^30-#(A∪B∪C∪D∪E)]/6^30
掐指一算 = 0.544634557955 (‧^ω^‧)
-------------------------------------------
說真的...按run的那瞬間好怕答案跟版友的程式解不一樣
我沒有勇氣回頭再check一次(╯°□°)╯ ~ /(_□_,,)\
--
Tags:
神魔之塔
All Comments

By Audriana
at 2017-09-11T05:32
at 2017-09-11T05:32

By Hedy
at 2017-09-11T18:53
at 2017-09-11T18:53

By Todd Johnson
at 2017-09-14T22:56
at 2017-09-14T22:56

By Megan
at 2017-09-19T11:19
at 2017-09-19T11:19

By Lauren
at 2017-09-23T03:49
at 2017-09-23T03:49

By Tristan Cohan
at 2017-09-25T08:24
at 2017-09-25T08:24

By Bethany
at 2017-09-26T07:24
at 2017-09-26T07:24

By Iris
at 2017-09-26T14:15
at 2017-09-26T14:15

By Kristin
at 2017-09-28T09:09
at 2017-09-28T09:09

By Kristin
at 2017-09-28T11:46
at 2017-09-28T11:46

By James
at 2017-09-30T07:25
at 2017-09-30T07:25

By Donna
at 2017-10-02T08:01
at 2017-10-02T08:01

By James
at 2017-10-03T18:57
at 2017-10-03T18:57

By Jack
at 2017-10-08T16:37
at 2017-10-08T16:37

By Isla
at 2017-10-11T20:31
at 2017-10-11T20:31

By Agatha
at 2017-10-12T17:36
at 2017-10-12T17:36

By Skylar DavisLinda
at 2017-10-13T11:31
at 2017-10-13T11:31

By Oliver
at 2017-10-15T16:00
at 2017-10-15T16:00

By Barb Cronin
at 2017-10-18T20:46
at 2017-10-18T20:46

By Valerie
at 2017-10-20T11:00
at 2017-10-20T11:00

By Andy
at 2017-10-23T22:58
at 2017-10-23T22:58

By Xanthe
at 2017-10-28T11:12
at 2017-10-28T11:12

By Sarah
at 2017-10-31T07:26
at 2017-10-31T07:26

By Lucy
at 2017-11-03T18:59
at 2017-11-03T18:59

By Ula
at 2017-11-07T11:53
at 2017-11-07T11:53

By Jack
at 2017-11-09T22:13
at 2017-11-09T22:13

By Genevieve
at 2017-11-14T22:03
at 2017-11-14T22:03

By Sierra Rose
at 2017-11-19T20:33
at 2017-11-19T20:33

By Anonymous
at 2017-11-20T18:00
at 2017-11-20T18:00

By Emma
at 2017-11-24T07:46
at 2017-11-24T07:46

By Olga
at 2017-11-25T07:51
at 2017-11-25T07:51

By Skylar DavisLinda
at 2017-11-25T15:57
at 2017-11-25T15:57

By Hedda
at 2017-11-26T22:54
at 2017-11-26T22:54

By Joe
at 2017-11-27T08:49
at 2017-11-27T08:49

By Jacky
at 2017-12-01T20:14
at 2017-12-01T20:14

By David
at 2017-12-05T13:45
at 2017-12-05T13:45

By Joseph
at 2017-12-07T17:25
at 2017-12-07T17:25

By Odelette
at 2017-12-08T03:37
at 2017-12-08T03:37

By Victoria
at 2017-12-08T12:10
at 2017-12-08T12:10

By Dora
at 2017-12-09T16:17
at 2017-12-09T16:17

By Regina
at 2017-12-11T23:03
at 2017-12-11T23:03

By Hedwig
at 2017-12-15T00:48
at 2017-12-15T00:48

By Poppy
at 2017-12-16T09:09
at 2017-12-16T09:09

By Iris
at 2017-12-18T11:13
at 2017-12-18T11:13

By Barb Cronin
at 2017-12-19T16:37
at 2017-12-19T16:37

By James
at 2017-12-22T16:03
at 2017-12-22T16:03

By Robert
at 2017-12-23T00:36
at 2017-12-23T00:36

By Frederic
at 2017-12-25T05:55
at 2017-12-25T05:55

By Edwina
at 2017-12-29T06:27
at 2017-12-29T06:27

By Rachel
at 2018-01-01T18:11
at 2018-01-01T18:11

By Selena
at 2018-01-03T10:44
at 2018-01-03T10:44

By James
at 2018-01-08T08:33
at 2018-01-08T08:33

By Margaret
at 2018-01-09T18:30
at 2018-01-09T18:30

By Barb Cronin
at 2018-01-11T04:27
at 2018-01-11T04:27

By Margaret
at 2018-01-14T16:55
at 2018-01-14T16:55

By Caroline
at 2018-01-18T15:30
at 2018-01-18T15:30

By Olive
at 2018-01-21T00:34
at 2018-01-21T00:34

By Sierra Rose
at 2018-01-21T12:06
at 2018-01-21T12:06

By Emily
at 2018-01-21T22:01
at 2018-01-21T22:01

By Caroline
at 2018-01-23T18:51
at 2018-01-23T18:51

By Irma
at 2018-01-26T04:58
at 2018-01-26T04:58

By William
at 2018-01-26T06:26
at 2018-01-26T06:26
Related Posts
MH什麼時候要救妖蛋?

By Jacob
at 2017-09-10T14:46
at 2017-09-10T14:46
這個版是不是被瘋頭的人管控了

By Wallis
at 2017-09-10T13:35
at 2017-09-10T13:35
每次大改版到底要不要改維修時間?

By Franklin
at 2017-09-10T12:19
at 2017-09-10T12:19
找不到取消放技能動畫設定

By Genevieve
at 2017-09-10T12:17
at 2017-09-10T12:17
狂歡命運儀到底要不要改轉動時間

By Catherine
at 2017-09-10T11:42
at 2017-09-10T11:42