巴哈姆特PS5第三階數量推測 - PS

Joe avatar
By Joe
at 2020-12-04T23:16

Table of Contents

我猜光碟版150台,數位板70台。

官方似乎沒有公布總共多少人抽幾台購買資格,

但因為有公布機率和張數,在有資料點的情況下,也許有機會推測出來才對。

官方沒有說公布的機率是怎麼算出來的,

但想了一下之後有兩種可能,其中一種是真實機率,

抽到A之後,把A的總抽數扣掉再抽下一位,

抽到B之後,把B的總抽數扣掉再抽下一位,以此類推,直到抽完為止。

但感覺式子有夠複雜,所以我猜大概不會是這種算法,


另一種算法就簡單多了,就是用假設每一抽都是獨立事件,有點像是轉蛋機率的算法。

假設池子裡總共有 X 張抽獎卷,而你手中擁有360張,總共抽 n 台PS5,

那用獨立事件的機率來算,你360張都抽不到的機率p為:

X - 360 n
p = (---------)
X

因此360張內有可能被抽到的機率就會是 1 - p = 0.1714(官方數據)。

另外附註說明一下,這邊只是在討論官方的「公布機率」算法,不是真正的抽法。

絕對不是實際的機率。

接下來代入網友分享的張數與機率後,

你可以得到N個式子:

X - 360 n
0.1714 = 1 - (----------)
X

X - 160 n
0.0801 = 1 - (----------)
X

以此類推,然後就可以開始解聯立,求出總抽獎卷張數 X 和 n 台PS5 。

不過我數學底子不夠,所以看到次方就掛了,式子移來移去就卡住。

但沒關係,我可以用窮舉法把X 和 n 找出來,而且至少我還會寫點程式,

用 python 2 隨意把想法寫下來讓它跑

------------------------------------------------

error = 100
segment = 10.0
is_disk = True
score = {}
for i in range(1, 30000):
for j in range(1, 100):
total = i * segment
if (is_disk):
a = abs(0.8286 - ((total- 360.0) / total) ** j)
b = abs(0.9199 - ((total - 160.0) / total) ** j)
c = abs(0.9541 - ((total - 90.0) / total) ** j)
d = abs(0.973 - ((total - 40.0) / total) ** j)
e = abs(0.9896 - ((total - 20.0) / total) ** j)
else:
a = abs(0.7442 - ((total- 360.0) / total) ** j)
b = abs(0.8771 - ((total - 160.0) / total) ** j)
c = abs(0.9289 - ((total - 90.0) / total) ** j)
d = abs(0.9678 - ((total - 40.0) / total) ** j)
e = abs(0.9837 - ((total - 20.0) / total) ** j)
avg = (a+b+c+d+e) / 5.0
score[avg] = [i,j,avg,a,b,c,d]
if (avg < error):
error = avg
print(i,j,avg,a,b,c,d)

all_score = score.keys()
all_score.sort()
print('\\\\\\\\\\\\\\\\\\\\\\\\')
for i in range(10):
X = score[all_score[i]][0] * segment
n = score[all_score[i]][1]
p1 = 1 - (((X - 360.0) / X) ** n)
p2 = 1 - (((X - 160.0) / X) ** n)
p3 = 1 - (((X - 90.0) / X) ** n)
p4 = 1 - (((X - 40.0) / X) ** n)
p5 = 1 - (((X - 20.0) / X) ** n)
print('X: %f, n %f, p1 = %.02f%%, p2 = %.02f%%, p3 = %.02f%%, p4 = %.02f%%,
p5 = %.02f%%' %(X, n, p1 * 100, p2* 100, p3* 100, p4* 100, p5* 100))

---------------------------------------------------

區間是假設總抽獎卷數是10張 ~ 300000張,每10張代入一次,

假設PS5有1 ~ 200台,每台代入一次。

總共代入 30000 * 200 = 600萬次。

每次用5種張數算出中獎機率(360張、160、90、40、20),

與公布機率相減取絕對值算平均得到平均誤差,

接著列出誤差前10低的資料點來分析。

-----------------------------------------------------------

光碟版結果:

(誤差由小到大前10名,機率p1 - p5 為360張, 160, 90, 40, 20的機率)

X: 296960.000000, n: 155.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 293130.000000, n: 153.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 289300.000000, n: 151.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 268240.000000, n: 140.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 272070.000000, n: 142.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 275900.000000, n: 144.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 264410.000000, n: 138.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 285470.000000, n: 149.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 279730.000000, n: 146.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

X: 283560.000000, n: 148.000000,
p1 = 17.14%, p2 = 8.01%, p3 = 4.59%, p4 = 2.07%, p5 = 1.04%

----------------------------------------------------------------

數位版結果:

(誤差由小到大前10名,機率p1 - p5 為360張, 160, 90, 40, 20的機率)

X: 81820.000000, n: 67.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 73290.000000, n: 60.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 80600.000000, n: 66.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 83040.000000, n: 68.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 74510.000000, n: 61.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 89130.000000, n: 73.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 90350.000000, n: 74.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 72070.000000, n: 59.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 79380.000000, n: 65.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

X: 84260.000000, n: 69.000000,
p1 = 25.58%, p2 = 12.29%, p3 = 7.11%, p4 = 3.22%, p5 = 1.62%

----------------------------------------------------

結論是光碟版150台,總抽獎劵數26萬-30萬張

數位板60-70台,總抽獎卷數8萬張。



實際操作完之後,本來想說應該很接近正確的數字,

但實際上計算精度其實存在一些問題,如果想要代入1000台ps5跑跑看有沒有更佳解,

程式會直接報錯,因為次方太高已經難以處理了。

想要真正算必須要想更精確的演算法......

而且網友提供的資料點只要有一點誤差,算出來的答案就會完全不一樣,

所以算出來的答案似乎正確性也存在著疑慮......

不過文章都寫到這裡了,現在才臉紅把文章自刪我可辦不到。

所以本人對於計算結果不負任何責任。

以上。

--
Tags: PS

All Comments

Iris avatar
By Iris
at 2020-12-08T19:25
嗯 原來是這樣啊 跟我想的差不多
Heather avatar
By Heather
at 2020-12-13T19:22
嗯 沒走錯 這裡數學版
Necoo avatar
By Necoo
at 2020-12-15T13:33
我是來打遊戲的 不是來學如何當碼農的(誤
George avatar
By George
at 2020-12-18T12:04
Edward Lewis avatar
By Edward Lewis
at 2020-12-18T22:21
嗯 跟我想的差不多
Margaret avatar
By Margaret
at 2020-12-19T21:07
看了一下自己在哪個板
Daph Bay avatar
By Daph Bay
at 2020-12-22T19:29
目前ps5除了po IG炫耀以外還能幹嘛?
Irma avatar
By Irma
at 2020-12-24T20:21
就我有 你没有
Emily avatar
By Emily
at 2020-12-26T16:16
天選之人的秘訣就在於中籤
Leila avatar
By Leila
at 2020-12-28T08:08
https://youtu.be/3bVeGQwmanQ 可以三秒就讀好萊莎
Zora avatar
By Zora
at 2020-12-30T17:35
不過遊戲轉蛋應該沒有"某角色只有N位,被抽掉就沒了"XD
Olivia avatar
By Olivia
at 2020-12-30T20:31
太複雜了,對我來說只有0跟100兩個數字
Hamiltion avatar
By Hamiltion
at 2020-12-31T20:12
太複雜了 只有中或沒中所以機率是50% (X
Charlotte avatar
By Charlotte
at 2021-01-04T08:42
看不懂 但和我想的應該差不多
Callum avatar
By Callum
at 2021-01-08T19:49
嗯嗯XDDDD
Mason avatar
By Mason
at 2021-01-12T00:37
嗯嗯 跟我算得差不多 我也覺得是這樣
Catherine avatar
By Catherine
at 2021-01-14T23:56
原來如此~
Christine avatar
By Christine
at 2021-01-16T09:19
如果是抽掉會減少獎項的話很難算
Ingrid avatar
By Ingrid
at 2021-01-20T06:33
還要考慮時間軸
Carolina Franco avatar
By Carolina Franco
at 2021-01-24T09:15
嗯 看來又瘋了一個
Jacob avatar
By Jacob
at 2021-01-28T21:25
快推
Edith avatar
By Edith
at 2021-01-31T17:05
有趣給推XD 看來也是想到就立刻寫程式的朋友呢
雖然這個資訊也不是很有用就是了 哈哈
Gary avatar
By Gary
at 2021-02-03T08:14
要不要換一個寫法看看?
如果巴哈那個是期望值 而不是機率?
期望值 np
Lydia avatar
By Lydia
at 2021-02-07T14:50
np = 0.1714, p= 360/X
Charlie avatar
By Charlie
at 2021-02-10T13:21
看無
Elma avatar
By Elma
at 2021-02-12T17:16
想起一年多前靠網路自學寫巨集的日子 (笑
Joe avatar
By Joe
at 2021-02-13T14:07
樓上文組
Olga avatar
By Olga
at 2021-02-15T02:54
看到一半以為自己在看程式碼 =.=?
Ina avatar
By Ina
at 2021-02-18T12:19
抽不到還要算數學 QQ
Elvira avatar
By Elvira
at 2021-02-22T03:11
嗯~所以下一次有幾台算的出來嗎?
Zanna avatar
By Zanna
at 2021-02-25T07:40
沒關係,我聯考數學滿分也是看不懂
Rebecca avatar
By Rebecca
at 2021-02-27T11:44
end看結論了
Dorothy avatar
By Dorothy
at 2021-02-28T14:30
文章中間的部分都是亂碼可以修改一下
Erin avatar
By Erin
at 2021-03-05T12:04
中籤最大的秘密就是抽中的人贏;沒中的人輸
Ula avatar
By Ula
at 2021-03-08T22:11
沒人想看程式碼 給結論就好==
Wallis avatar
By Wallis
at 2021-03-09T22:16
中獎最大的秘密 有中就贏沒中就輸
Callum avatar
By Callum
at 2021-03-12T15:38
有懶人包嗎?
Ida avatar
By Ida
at 2021-03-16T17:47
沒抽中,對我來講就是0
Joseph avatar
By Joseph
at 2021-03-17T23:57
國考版嗎哈哈哈哈
Kyle avatar
By Kyle
at 2021-03-20T14:22
還好我有中
Rebecca avatar
By Rebecca
at 2021-03-24T06:25
怕人家說我看不懂,先推
Heather avatar
By Heather
at 2021-03-26T02:19
好像有點味道
Una avatar
By Una
at 2021-03-29T21:24
我就知道會這樣
Doris avatar
By Doris
at 2021-04-03T05:01
機率是機率 運氣是運氣阿 要不然早就中樂透了
Callum avatar
By Callum
at 2021-04-08T00:26
恩 跟我算得差不多
Belly avatar
By Belly
at 2021-04-10T21:53
又瘋了一個XD
Caitlin avatar
By Caitlin
at 2021-04-14T02:32
跟我算的一樣
Genevieve avatar
By Genevieve
at 2021-04-14T10:22
跟我想的一樣
Oscar avatar
By Oscar
at 2021-04-15T23:20
買個主機有這麼困難..
Skylar Davis avatar
By Skylar Davis
at 2021-04-17T20:18
如果你要做機率連乘的數值運算,最好取對數。
Poppy avatar
By Poppy
at 2021-04-18T11:31
這次一定
Una avatar
By Una
at 2021-04-22T09:26
我還以為這裡是數學版呢
Carolina Franco avatar
By Carolina Franco
at 2021-04-23T14:24
我看到算式就懂了 end
Frederic avatar
By Frederic
at 2021-04-26T22:19
跟我算的一樣
Blanche avatar
By Blanche
at 2021-04-29T13:14
嗯嗯? 數學版? 反正對我而言就是買不到啊!!...
Quintina avatar
By Quintina
at 2021-04-29T20:24
會不會等我買得到的時候,pro差不多出了醬
Anonymous avatar
By Anonymous
at 2021-05-03T05:29
pro如果
pro如果剛出一樣搶不到,剛好買原版
Caitlin avatar
By Caitlin
at 2021-05-04T10:50
那看起來台灣今年大概就是配到4000左右
Carol avatar
By Carol
at 2021-05-08T22:45
數學版教學活動
John avatar
By John
at 2021-05-13T02:18
我以為我進錯版
Audriana avatar
By Audriana
at 2021-05-16T12:31
472p幣~

DOA5LR ✕『AQUAPLUS』合作DLC即將下架

Ina avatar
By Ina
at 2020-12-04T21:48
偶然看到的 DOA5LR和『AQUAPLUS』的合作DLC即將在12/12下架 ※『AQUAPLUS』就是做過傳頌之物、To Heart、花冠之淚、白色相簿等作的遊戲公司 https://i.imgur.com/ZRmCjKP.jpg 各位可能現在已經去DOA6那邊了 也可能對DOA6失望跑回來DOA5LR ...

蘇菲的鍊金工房DLC疑問

Skylar Davis avatar
By Skylar Davis
at 2020-12-04T21:43
今日終於破關FF15了,皇家版有加些東西,DLC伊格尼斯劇情真的讚! 之後準備要來攻略蘇菲鍊金工房,因為從沒玩過這系列 本來想說從萊莎入手好了,但看了討論串大家都說新手要玩蘇菲atat 就這樣跑去蝦皮買了蘇菲+菲莉絲 前幾日安裝完光碟並下載更新檔後,發現有DLC 想請問一下這DLC值得入手嗎?還 ...

SIE CEO:說我們輕視日本的報導有太多錯誤

Skylar DavisLinda avatar
By Skylar DavisLinda
at 2020-12-04T20:33
人家是社長,總不可能叫他不要受訪吧? 所以我是在想,既然大家覺得這是幹話,那要怎樣回才比較得體又不像幹話 畢竟他是被訪問,並不是突然在twitter或其他平台講這種話 我個人是蠻希望他在最後能稍微透漏JP STUDIO有在開發幾個大作之後會發表這樣 或者之後開放把O/X改回來 這樣大家應該就不會這麼 ...

巴哈姆特PS5登記抽選活動開獎

Cara avatar
By Cara
at 2020-12-04T19:27
剛才收到一封巴哈的勘誤信, 我本來想說是什麼事? 難道是我本來有中,但誤勘成沒中嗎? 很興奮的打開來, 內容大概意思就是 『歹勢啦,你的中簽率我們誤植成數位版的0.9%了, 其實你的中簽率是0.5%才對喔~~~ 除此之外,其它的資訊都一切正確喔~~~ 你還是沒中喔~~~』 呃… ...

SIE CEO:說我們輕視日本的報導有太多錯誤

Queena avatar
By Queena
at 2020-12-04T18:33
https://www.gamesradar.com/jim-ryan-on-claims-that-sony-is-shifting-away-from-japan-a-lot-of-the-commentary-is-inaccurate/ https://reurl.cc/N6KN49 SIE CE ...