富翁的遺產 - 拼圖
![Dora avatar](/img/woman-glasses.jpg)
By Dora
at 2010-10-23T15:52
at 2010-10-23T15:52
Table of Contents
※ 引述《weselyong (Wesely翁)》之銘言:
: 今天早上聽同學講的
: 我不知道有沒有OP耶...
: 請再告訴我~
: ****************分隔線*******************
: 有一個非常富有的老翁臨死前把他的全部財產分成兩張支票
: 要給他兩個兒子,其中一張的面額是另一張的兩倍。
: 但是支票分別放在信封裡面。
: 老富翁說:
: 「你們看過之後可以決定要不要交換,前提是對方還不知道你這張的數字是多少的時候」
:
: 老大看到他拿到一千萬之後OS:
: 他那包比我大的機率是0.5,可能有兩千萬
: 比我小的機率是0.5,可能有五百萬
: 那我跟他換之後的期望值應該是1250萬! 比我的1000萬多!當然換!
: 弟弟看到他拿到500萬之後也 OS一發:
: 哥哥可能拿到1000萬,機率是0.5
: 也可能只有250萬,機率是0.5
: 那我跟他換的期望值是 500 + 125 = 625萬!比我的500萬多!當然換!
: 很明顯的其中必有詐
: 他們錯了嗎?
: (我不知道答案喔XDD 或者說我不確定我答案是對的)
這題維基百科裡有...
http://en.wikipedia.org/wiki/Two_envelopes_problem
1. I denote by A the amount in my selected envelope.
2. The probability that A is the smaller amount is 1/2, and that it is the
larger amount is also 1/2.
3. The other envelope may contain either 2A or A/2.
4. If A is the smaller amount the other envelope contains 2A.
5. If A is the larger amount the other envelope contains A/2.
6. Thus the other envelope contains 2A with probability 1/2 and A/2 with
probability 1/2.
7. So the expected value of the money in the other envelope is
{1 \over 2} 2A + {1 \over 2} {A \over 2} = {5 \over 4}A
8. This is greater than A, so I gain on average by switching.
9. After the switch, I can denote that content by B and reason in exactly
the same manner as above.
10. I will conclude that the most rational thing to do is to swap back
again.
11. To be rational, I will thus end up swapping envelopes indefinitely.
12. As it seems more rational to open just any envelope than to swap
indefinitely, we have a contradiction.
關鍵大致是兩個式子的"A"是不同情形下無法運算, 或是
Devlin writes:
To summarize: the paradox arises because you use the prior probabilities
to calculate the expected gain rather than the posterior probabilities. As we
have seen, it is not possible to choose a prior distribution which results in
a posterior distribution for which the original argument holds; there simply
are no circumstances in which it would be valid to always use probabilities
of 0.5.
--
: 今天早上聽同學講的
: 我不知道有沒有OP耶...
: 請再告訴我~
: ****************分隔線*******************
: 有一個非常富有的老翁臨死前把他的全部財產分成兩張支票
: 要給他兩個兒子,其中一張的面額是另一張的兩倍。
: 但是支票分別放在信封裡面。
: 老富翁說:
: 「你們看過之後可以決定要不要交換,前提是對方還不知道你這張的數字是多少的時候」
:
: 老大看到他拿到一千萬之後OS:
: 他那包比我大的機率是0.5,可能有兩千萬
: 比我小的機率是0.5,可能有五百萬
: 那我跟他換之後的期望值應該是1250萬! 比我的1000萬多!當然換!
: 弟弟看到他拿到500萬之後也 OS一發:
: 哥哥可能拿到1000萬,機率是0.5
: 也可能只有250萬,機率是0.5
: 那我跟他換的期望值是 500 + 125 = 625萬!比我的500萬多!當然換!
: 很明顯的其中必有詐
: 他們錯了嗎?
: (我不知道答案喔XDD 或者說我不確定我答案是對的)
這題維基百科裡有...
http://en.wikipedia.org/wiki/Two_envelopes_problem
1. I denote by A the amount in my selected envelope.
2. The probability that A is the smaller amount is 1/2, and that it is the
larger amount is also 1/2.
3. The other envelope may contain either 2A or A/2.
4. If A is the smaller amount the other envelope contains 2A.
5. If A is the larger amount the other envelope contains A/2.
6. Thus the other envelope contains 2A with probability 1/2 and A/2 with
probability 1/2.
7. So the expected value of the money in the other envelope is
{1 \over 2} 2A + {1 \over 2} {A \over 2} = {5 \over 4}A
8. This is greater than A, so I gain on average by switching.
9. After the switch, I can denote that content by B and reason in exactly
the same manner as above.
10. I will conclude that the most rational thing to do is to swap back
again.
11. To be rational, I will thus end up swapping envelopes indefinitely.
12. As it seems more rational to open just any envelope than to swap
indefinitely, we have a contradiction.
關鍵大致是兩個式子的"A"是不同情形下無法運算, 或是
Devlin writes:
To summarize: the paradox arises because you use the prior probabilities
to calculate the expected gain rather than the posterior probabilities. As we
have seen, it is not possible to choose a prior distribution which results in
a posterior distribution for which the original argument holds; there simply
are no circumstances in which it would be valid to always use probabilities
of 0.5.
--
Tags:
拼圖
All Comments
![Kumar avatar](/img/woman-ring.jpg)
By Kumar
at 2010-10-27T20:32
at 2010-10-27T20:32
![Ina avatar](/img/cat1.jpg)
By Ina
at 2010-10-28T19:46
at 2010-10-28T19:46
![Tom avatar](/img/boy1.jpg)
By Tom
at 2010-10-29T14:46
at 2010-10-29T14:46
![Robert avatar](/img/boy2.jpg)
By Robert
at 2010-10-29T21:52
at 2010-10-29T21:52
![Kelly avatar](/img/cat2.jpg)
By Kelly
at 2010-10-31T23:44
at 2010-10-31T23:44
![Donna avatar](/img/cat3.jpg)
By Donna
at 2010-11-01T10:26
at 2010-11-01T10:26
![Steve avatar](/img/cat1.jpg)
By Steve
at 2010-11-02T23:59
at 2010-11-02T23:59
![Doris avatar](/img/cat4.jpg)
By Doris
at 2010-11-06T04:32
at 2010-11-06T04:32
![Joseph avatar](/img/cat2.jpg)
By Joseph
at 2010-11-09T20:26
at 2010-11-09T20:26
![Yuri avatar](/img/cat5.jpg)
By Yuri
at 2010-11-13T02:48
at 2010-11-13T02:48
Related Posts
益智玩具
![Sarah avatar](/img/girl3.jpg)
By Sarah
at 2010-10-22T23:58
at 2010-10-22T23:58
寫不完的作業
![Edith avatar](/img/cat3.jpg)
By Edith
at 2010-10-22T01:04
at 2010-10-22T01:04
PuzzleUp 2010 (15) Number Pairs
![Olive avatar](/img/beaver.jpg)
By Olive
at 2010-10-21T01:37
at 2010-10-21T01:37
猜牌的遊戲
![Agnes avatar](/img/girl.jpg)
By Agnes
at 2010-10-21T01:24
at 2010-10-21T01:24
猜牌的遊戲
![Jacky avatar](/img/bee.jpg)
By Jacky
at 2010-10-21T00:00
at 2010-10-21T00:00