今天老師問的一個問題 - 推理遊戲

By Yuri
at 2004-11-28T23:02
at 2004-11-28T23:02
Table of Contents
※ 引述《dalconan (寒江雪)》之銘言:
: 先分成三堆甲乙丙
: 把甲乙拿來秤 (第一次)
: case1 一樣重
: 那就是有問題的在丙
: 把丙拿兩顆來秤(第二次)
這裡這樣秤不好
因為下面的1-1會無法分辨有問題的那個是輕是重
較好的方法是
假設丙的四個是ABCD
秤 AB / CN (N是從甲乙那裡隨便找的一個)
然後平衡就秤 D / N
如果這邊左重,就表示是D且較重
左輕就表示是D且較輕
不平衡秤 A / B
如果兩次都是左重,就是A且較重
左重->平衡,是C且較輕
左重->右重,是B且較重
右重->右重,是A且較輕
右重->平衡,是C且較重
右重->左重,是B且較輕
: case1-1
: 兩顆一樣重~代表有問題是剩下的兩顆之一
: 把其中一顆拿來秤~假如一樣重就是剩下那一顆~反之就是秤上這顆(第三次)
: case1-2
: 兩顆不一樣重~代表有問題是這兩顆其中一顆
: 把其中一顆換成沒問題的球
: 假如恢復平衡就是換掉那顆有問題~反之就是秤上這顆
: case2
: 甲乙不一樣重
: 表示有問題的在這八顆裡面
: 挑六顆出來秤(第二次)
這裡也是不好的秤法
假設甲的四個是ABCD
乙的四個是EFGH
可以秤 ABE / CFN
如果平衡就秤 G / H
不平衡的話
兩次都同一邊重秤 A / B
兩次不同邊重秤 C / N
: case2-1一樣重
: 剩下兩顆挑一顆出來和正常的秤
: 如果一樣重就是剩下那顆有問題~反之則是秤上那顆
: case2-2不一樣重
: 這邊我想不出來=.="
這種硬幣問題用編碼的方法做更容易
不過那樣寫好像不容易看懂 ^^;
--
: 先分成三堆甲乙丙
: 把甲乙拿來秤 (第一次)
: case1 一樣重
: 那就是有問題的在丙
: 把丙拿兩顆來秤(第二次)
這裡這樣秤不好
因為下面的1-1會無法分辨有問題的那個是輕是重
較好的方法是
假設丙的四個是ABCD
秤 AB / CN (N是從甲乙那裡隨便找的一個)
然後平衡就秤 D / N
如果這邊左重,就表示是D且較重
左輕就表示是D且較輕
不平衡秤 A / B
如果兩次都是左重,就是A且較重
左重->平衡,是C且較輕
左重->右重,是B且較重
右重->右重,是A且較輕
右重->平衡,是C且較重
右重->左重,是B且較輕
: case1-1
: 兩顆一樣重~代表有問題是剩下的兩顆之一
: 把其中一顆拿來秤~假如一樣重就是剩下那一顆~反之就是秤上這顆(第三次)
: case1-2
: 兩顆不一樣重~代表有問題是這兩顆其中一顆
: 把其中一顆換成沒問題的球
: 假如恢復平衡就是換掉那顆有問題~反之就是秤上這顆
: case2
: 甲乙不一樣重
: 表示有問題的在這八顆裡面
: 挑六顆出來秤(第二次)
這裡也是不好的秤法
假設甲的四個是ABCD
乙的四個是EFGH
可以秤 ABE / CFN
如果平衡就秤 G / H
不平衡的話
兩次都同一邊重秤 A / B
兩次不同邊重秤 C / N
: case2-1一樣重
: 剩下兩顆挑一顆出來和正常的秤
: 如果一樣重就是剩下那顆有問題~反之則是秤上那顆
: case2-2不一樣重
: 這邊我想不出來=.="
這種硬幣問題用編碼的方法做更容易
不過那樣寫好像不容易看懂 ^^;
--
Tags:
推理遊戲
All Comments
Related Posts
今天老師問的一個問題

By Ina
at 2004-11-28T20:53
at 2004-11-28T20:53
Re: 問問問..

By Lucy
at 2004-11-28T16:23
at 2004-11-28T16:23
Re: 問問問..

By Joe
at 2004-11-28T01:58
at 2004-11-28T01:58
問問問..

By Lily
at 2004-11-28T00:59
at 2004-11-28T00:59
數學題目..

By Quanna
at 2004-11-27T21:48
at 2004-11-27T21:48