Toughness 和 Vitality 取捨 - 線上

By Olivia
at 2012-10-03T20:58
at 2012-10-03T20:58
Table of Contents
續上一篇分析,在巴哈上有位大大分享了他的想法,小弟認為還蠻有趣的,
於是拿來算了一下,大家可以參考一下。
感謝巴哈版 Yabbie大提供想法。
※ 引述《yabbie (Yabbie)》之銘言
> 關於V和D的取捨,分享一下我的思路:
> 設對方攻擊輸出的原始值:d,我方Armor值:a,對我方造成的HP損耗:h
> 則h=d/a
> 設我方實際生命值:HP,我方死前所能承受的合計攻擊值(不考慮治療、回血):D
> 則D=HP*a
> 如何使D最大化?理論上HP=a時乘積最大
為何說HP=a時乘積最大? 要讓這個論點成立必須讓HP+A=C(定值)。
利用這樣的想法,可以假設頂裝能夠得到的總數值是固定的,所以分配給Vitality(V)和
Toughness(T)的量也是固定的,則原方程式為V + T=C。
移項得
V = C - T
設 T 加上基本值後
T' = T + 916
現在把D = (基本HP+10*V)*(defense+T')整理一下,
(以下基本HP縮寫BHP,defense 縮寫d。)
(這裡BHP已經包含了V的基本值,所以只算額外增加的部分)
f(T)
= BHP*d + 10*d*V+BHP*T'+10*V*T' ==> 將 V 和 T'代入
= BHP*d + 10*(C-T)*d + BHP*(T+916) + 10*(C -T)*(T+916)
= BHP*d + 10*C*d - 10*d*T + BHP*T + BHP*916 + 10*C*T + 9160*C - 9160*T -
(10*T^2)
= (-10)*T^2 + (BHP - 10*d + 10*C - 9160)*T + R ==> R包含所有常數,不重要
令(BHP - 10*d + 10*C - 9160) = k,整理一下
f(T) = - (10*T^2) + k*T + R
微分一下可取極限值
f'(T) = (-20)T + k = 0
得 T = (1/20) k 時有極限,將所有已知代回可得
T = (1/20)(BHP - 10*d + 10*C - 9160)
反推求V值
V = (1/20)(10*C - BHP + 10*d + 9160)
這才是最佳的配置。
驗算:
拿我當前角色的數值來做計算,
BHP = 10805,V = 583,T = 900,C = V+T = 1483,d = 1211。
最佳化 T = (1/20)(BHP - 10*d + 10*C - 9160) = 218.25
最佳化 V = (1/20)(10*C - BHP + 10*d + 9160) = 1264.75
有趣的是,用這個數值回算,會發現
HP = 10805+1264.75*10 = 23452.5
Armor = 1211+218.25+916 = 2345.25
正好 A = (1/10)HP 完全符合第一種推論
結論:
可以用之前A=(1/10)HP判斷式找出下點該投資的屬性
或是
T = (1/20)(BHP - 10*d + 10*C - 9160)
V = (1/20)(10*C - BHP + 10*d + 9160)
求得滿裝後的屬性分布
--
Tags:
線上
All Comments

By Valerie
at 2012-10-06T16:55
at 2012-10-06T16:55

By Dinah
at 2012-10-08T18:08
at 2012-10-08T18:08

By Edwina
at 2012-10-10T13:38
at 2012-10-10T13:38

By Dorothy
at 2012-10-15T04:47
at 2012-10-15T04:47

By Annie
at 2012-10-17T13:45
at 2012-10-17T13:45

By Connor
at 2012-10-21T21:33
at 2012-10-21T21:33

By Isla
at 2012-10-23T12:56
at 2012-10-23T12:56

By Iris
at 2012-10-27T13:12
at 2012-10-27T13:12

By Delia
at 2012-10-28T13:09
at 2012-10-28T13:09

By Joe
at 2012-10-30T10:36
at 2012-10-30T10:36

By Eartha
at 2012-10-31T03:37
at 2012-10-31T03:37

By Madame
at 2012-11-01T13:54
at 2012-11-01T13:54

By Jack
at 2012-11-06T08:40
at 2012-11-06T08:40

By Ivy
at 2012-11-08T11:43
at 2012-11-08T11:43

By Skylar Davis
at 2012-11-10T02:57
at 2012-11-10T02:57

By Frederica
at 2012-11-12T13:40
at 2012-11-12T13:40

By Audriana
at 2012-11-15T16:28
at 2012-11-15T16:28

By James
at 2012-11-18T08:18
at 2012-11-18T08:18

By Audriana
at 2012-11-20T11:17
at 2012-11-20T11:17
Related Posts
原渾沌 批踢踢

By Hardy
at 2012-10-03T20:50
at 2012-10-03T20:50
Orichalcum 重生時間

By Zenobia
at 2012-10-03T20:15
at 2012-10-03T20:15
youtube影片「慢慢來,遊戲將變得不一樣」

By Linda
at 2012-10-03T19:49
at 2012-10-03T19:49
請問關於激戰2和無盡的任務2

By Olivia
at 2012-10-03T19:30
at 2012-10-03T19:30
一鍵Combo的方法 這個名字好像也不錯

By Tristan Cohan
at 2012-10-03T19:17
at 2012-10-03T19:17