Re: 數列一題 - 推理遊戲
![Olive avatar](/img/cat3.jpg)
By Olive
at 2009-04-11T13:50
at 2009-04-11T13:50
Table of Contents
※ 引述《Hseuler (藍色貍貓)》之銘言:
: 1,1,5,3,23,7,119,15,719,31,___
: 下一數是?
整串數列一起看下來感覺沒有什麼意義
所以先把數列分成奇偶兩類
奇數有所求項->先看偶數項觀察規律
偶數:
1 = 2-1 = 2*1-1 = 2*2^0-1
3 = 4-1 = 2*2-1 = 2*2^1-1
7 = 8-1 = 2*4-1 = 2*2^2-1
15 = 16-1 = 2*8-1 = 2*2^3-1
31 = 32-1 = 2*16-1 = 2*2^4-1
照道理說應該同理qq
奇數:
1 = 2-1 = 2*1-1
5 = 6-1 = 2*3-1
23 = 24-1 = 2*12-1
119 = 120-1 = 2*60-1
719 = 720-1 = 2*360-1
? =
發現沿用偶數項的規律是剝穴...0.0
只好把奇數項分解後的-1部份不看出來討論
1 = 2-1 = 2*1-1 --> 2*1
*3
5 = 6-1 = 2*3-1 --> 2*3
*4
23 = 24-1 = 2*12-1 --> 2*12
*5
119 = 120-1 = 2*60-1 --> 2*60
*6
719 = 720-1 = 2*360-1 --> 2*360
*7?
? = 於是我合理推論 = 2*360*7-1 = 5040-1 = 5039
得了一個自己都覺得很扯的解
--
其實我覺得這題根本就在亂掰
根本可以把奇數項塗掉不看= =
--
別難過,因為人生就是一坨屎,
就算你聞得再怎麼認真,依然只有臭味而已。
--
: 1,1,5,3,23,7,119,15,719,31,___
: 下一數是?
整串數列一起看下來感覺沒有什麼意義
所以先把數列分成奇偶兩類
奇數有所求項->先看偶數項觀察規律
偶數:
1 = 2-1 = 2*1-1 = 2*2^0-1
3 = 4-1 = 2*2-1 = 2*2^1-1
7 = 8-1 = 2*4-1 = 2*2^2-1
15 = 16-1 = 2*8-1 = 2*2^3-1
31 = 32-1 = 2*16-1 = 2*2^4-1
照道理說應該同理qq
奇數:
1 = 2-1 = 2*1-1
5 = 6-1 = 2*3-1
23 = 24-1 = 2*12-1
119 = 120-1 = 2*60-1
719 = 720-1 = 2*360-1
? =
發現沿用偶數項的規律是剝穴...0.0
只好把奇數項分解後的-1部份不看出來討論
1 = 2-1 = 2*1-1 --> 2*1
*3
5 = 6-1 = 2*3-1 --> 2*3
*4
23 = 24-1 = 2*12-1 --> 2*12
*5
119 = 120-1 = 2*60-1 --> 2*60
*6
719 = 720-1 = 2*360-1 --> 2*360
*7?
? = 於是我合理推論 = 2*360*7-1 = 5040-1 = 5039
得了一個自己都覺得很扯的解
--
其實我覺得這題根本就在亂掰
根本可以把奇數項塗掉不看= =
--
別難過,因為人生就是一坨屎,
就算你聞得再怎麼認真,依然只有臭味而已。
--
Tags:
推理遊戲
All Comments
![Susan avatar](/img/girl1.jpg)
By Susan
at 2009-04-15T04:41
at 2009-04-15T04:41
![Erin avatar](/img/girl2.jpg)
By Erin
at 2009-04-15T09:09
at 2009-04-15T09:09
Related Posts
有點老的問題!雙胞胎
![Kama avatar](/img/cat3.jpg)
By Kama
at 2009-04-08T02:47
at 2009-04-08T02:47
進階三段邏輯題
![Victoria avatar](/img/cat4.jpg)
By Victoria
at 2009-04-07T20:21
at 2009-04-07T20:21
關於數列
![Zora avatar](/img/cat5.jpg)
By Zora
at 2009-04-07T19:21
at 2009-04-07T19:21
關於數列
![Yuri avatar](/img/girl.jpg)
By Yuri
at 2009-04-07T11:59
at 2009-04-07T11:59
數列一題
![David avatar](/img/beret.jpg)
By David
at 2009-04-06T21:53
at 2009-04-06T21:53