PuzzleUp 2010 (6) Sixteen Numbers - 拼圖

By David
at 2010-08-18T19:56
at 2010-08-18T19:56
Table of Contents
時限:2010/08/19(四)19:00~08/25(三)18:59
答案可上傳5次,但每改1次扣20分(基本分為100分)
在比賽期間內可隨時回答,但只有在時限內回答者有額外加分
◆Sixteen Numbers
You are going to place all numbers from 1 to 16 on a 4x4 chessboard such that
all consecutive number pairs (1-2, 2-3, ..., 15-16) will be on the
neighboring cells (left-right-top-down).
In how many different ways can this be done?
If the question was asked for a 2x2 chessboard, the answer would be 8.
你要把1到16的每個數字分別填入一個4*4的棋盤
並且要讓所有連續的數對都在棋盤上相鄰(1要跟2相鄰 2要跟3相鄰 ...15要跟16相鄰)
請問共幾種方法?
如果這題改成2*2的棋盤 那麼答案是8種.
==============================================================================
我猜3*3的話答案是40種 4*4答案是別鬧了 這怎麼可能告訴你
--
答案可上傳5次,但每改1次扣20分(基本分為100分)
在比賽期間內可隨時回答,但只有在時限內回答者有額外加分
◆Sixteen Numbers
You are going to place all numbers from 1 to 16 on a 4x4 chessboard such that
all consecutive number pairs (1-2, 2-3, ..., 15-16) will be on the
neighboring cells (left-right-top-down).
In how many different ways can this be done?
If the question was asked for a 2x2 chessboard, the answer would be 8.
你要把1到16的每個數字分別填入一個4*4的棋盤
並且要讓所有連續的數對都在棋盤上相鄰(1要跟2相鄰 2要跟3相鄰 ...15要跟16相鄰)
請問共幾種方法?
如果這題改成2*2的棋盤 那麼答案是8種.
==============================================================================
我猜3*3的話答案是40種 4*4答案是別鬧了 這怎麼可能告訴你
--
Tags:
拼圖
All Comments

By Ingrid
at 2010-08-19T21:03
at 2010-08-19T21:03

By Ingrid
at 2010-08-24T09:42
at 2010-08-24T09:42

By Gilbert
at 2010-08-28T23:47
at 2010-08-28T23:47

By Selena
at 2010-09-01T13:45
at 2010-09-01T13:45

By Freda
at 2010-09-02T15:42
at 2010-09-02T15:42

By Susan
at 2010-09-05T21:57
at 2010-09-05T21:57

By Mason
at 2010-09-10T07:41
at 2010-09-10T07:41

By Rae
at 2010-09-12T03:21
at 2010-09-12T03:21

By Franklin
at 2010-09-12T04:43
at 2010-09-12T04:43

By Thomas
at 2010-09-16T16:14
at 2010-09-16T16:14

By Connor
at 2010-09-21T00:09
at 2010-09-21T00:09

By Puput
at 2010-09-23T08:12
at 2010-09-23T08:12

By Gilbert
at 2010-09-27T05:04
at 2010-09-27T05:04

By Eartha
at 2010-09-27T19:05
at 2010-09-27T19:05

By Lily
at 2010-09-29T18:42
at 2010-09-29T18:42

By Caroline
at 2010-09-30T09:51
at 2010-09-30T09:51

By Anonymous
at 2010-10-01T03:40
at 2010-10-01T03:40

By Olga
at 2010-10-03T03:20
at 2010-10-03T03:20

By Adele
at 2010-10-03T07:05
at 2010-10-03T07:05

By Ula
at 2010-10-06T03:12
at 2010-10-06T03:12

By Catherine
at 2010-10-06T12:35
at 2010-10-06T12:35

By Brianna
at 2010-10-10T13:54
at 2010-10-10T13:54

By Oscar
at 2010-10-15T02:22
at 2010-10-15T02:22

By Hedda
at 2010-10-18T15:05
at 2010-10-18T15:05

By Donna
at 2010-10-19T05:36
at 2010-10-19T05:36

By Jacky
at 2010-10-20T14:07
at 2010-10-20T14:07

By Lucy
at 2010-10-21T02:28
at 2010-10-21T02:28

By Ethan
at 2010-10-25T00:23
at 2010-10-25T00:23

By Dorothy
at 2010-10-25T01:37
at 2010-10-25T01:37

By Elma
at 2010-10-25T13:07
at 2010-10-25T13:07

By Rebecca
at 2010-10-27T22:49
at 2010-10-27T22:49

By Dora
at 2010-10-31T06:27
at 2010-10-31T06:27
Related Posts
幽浮-3

By Charlie
at 2010-08-18T00:02
at 2010-08-18T00:02
幽浮-2

By Una
at 2010-08-18T00:00
at 2010-08-18T00:00
兩個回字型連接(只能三筆)

By Daph Bay
at 2010-08-17T23:17
at 2010-08-17T23:17
七寶奇謀之年齡之謎

By Zora
at 2010-08-17T14:39
at 2010-08-17T14:39
2000pcs 迪士尼 婚禮慶典

By Christine
at 2010-08-17T02:18
at 2010-08-17T02:18