ProjectEuler 429 Sum of squares of uni - 拼圖
By Charlie
at 2013-05-26T11:46
at 2013-05-26T11:46
Table of Contents
429. Sum of squares of unitary divisors
http://projecteuler.net/problem=429
如果一正整數n的因數d符合gcd(d, n/d) = 1,則稱d為n的「元因數」。
4! = 24的元因數共有1, 3, 8, 24四個,其平方和為1^2 + 3^2 + 8^2 + 24^2 = 650。
令S(n)為n的元因數的平方和,故S(4!) = 650。
請求出S(100000000!) mod 1000000009。
--
http://projecteuler.net/problem=429
如果一正整數n的因數d符合gcd(d, n/d) = 1,則稱d為n的「元因數」。
4! = 24的元因數共有1, 3, 8, 24四個,其平方和為1^2 + 3^2 + 8^2 + 24^2 = 650。
令S(n)為n的元因數的平方和,故S(4!) = 650。
請求出S(100000000!) mod 1000000009。
--
Tags:
拼圖
All Comments
By Yedda
at 2013-05-28T04:39
at 2013-05-28T04:39
By Lauren
at 2013-05-31T16:48
at 2013-05-31T16:48
By Ina
at 2013-06-01T07:37
at 2013-06-01T07:37
By Sarah
at 2013-06-05T16:51
at 2013-06-05T16:51
By Charlotte
at 2013-06-09T20:22
at 2013-06-09T20:22
By Elizabeth
at 2013-06-13T17:21
at 2013-06-13T17:21
Related Posts
最強最弱的比賽場數
By Daph Bay
at 2013-05-26T08:29
at 2013-05-26T08:29
最強最弱的比賽場數
By Faithe
at 2013-05-26T01:03
at 2013-05-26T01:03
方塊拼圖...(五連方塊)
By Ina
at 2013-05-25T12:09
at 2013-05-25T12:09
方塊拼圖...(五連方塊)
By Zora
at 2013-05-25T11:21
at 2013-05-25T11:21
玩到超崩潰!台大大二生辦密室逃脫遊戲
By Edwina
at 2013-05-25T03:35
at 2013-05-25T03:35