ProjectEuler 422 Sequence of points on - 拼圖
By Madame
at 2013-04-09T05:52
at 2013-04-09T05:52
Table of Contents
422. Sequence of points on a hyperbola
http://projecteuler.net/problem=422
令H為雙曲線12x^2 + 7xy - 12y^2 = 625。
接著,定義X為H線上的一點(7, 1)。
再來,我們定義一組在H上的點集數列{P_i : i≧1}如下:
‧P_1 = (13, 61/4)。
‧P_2 = (-43/6, -4)。
‧對於所有i>2,P_i為H上異於P_(i-1)的唯一一點使得P_i P_(i-1)平行於P_(i-2) X。
可以證明P_i存在且唯一,並且其坐標值皆為有理數。
http://projecteuler.net/project/images/p422_hyperbola.gif
已知 P_3 = (-19/2 , -229/24),P_4 = (1267/144, -37/12)以及
P_7 = (17194218091/143327232, 274748766781/1719926784)。
請求出當n = 11^14時P_n的值,答案的格式如下:
若P_n = (a/b, c/d)為分母大於0的最簡分數,那答案即為
(a + b + c + d) mod 1000000007。
例如n = 7時,答案是806236837。
--
http://projecteuler.net/problem=422
令H為雙曲線12x^2 + 7xy - 12y^2 = 625。
接著,定義X為H線上的一點(7, 1)。
再來,我們定義一組在H上的點集數列{P_i : i≧1}如下:
‧P_1 = (13, 61/4)。
‧P_2 = (-43/6, -4)。
‧對於所有i>2,P_i為H上異於P_(i-1)的唯一一點使得P_i P_(i-1)平行於P_(i-2) X。
可以證明P_i存在且唯一,並且其坐標值皆為有理數。
http://projecteuler.net/project/images/p422_hyperbola.gif
已知 P_3 = (-19/2 , -229/24),P_4 = (1267/144, -37/12)以及
P_7 = (17194218091/143327232, 274748766781/1719926784)。
請求出當n = 11^14時P_n的值,答案的格式如下:
若P_n = (a/b, c/d)為分母大於0的最簡分數,那答案即為
(a + b + c + d) mod 1000000007。
例如n = 7時,答案是806236837。
--
Tags:
拼圖
All Comments
By Edith
at 2013-04-12T18:49
at 2013-04-12T18:49
By Gilbert
at 2013-04-16T12:09
at 2013-04-16T12:09
By Emily
at 2013-04-18T19:21
at 2013-04-18T19:21
By Andy
at 2013-04-23T14:02
at 2013-04-23T14:02
By Kama
at 2013-04-24T03:25
at 2013-04-24T03:25
By Emily
at 2013-04-24T11:37
at 2013-04-24T11:37
By Victoria
at 2013-04-26T02:42
at 2013-04-26T02:42
By Bethany
at 2013-04-27T23:47
at 2013-04-27T23:47
By Bethany
at 2013-05-01T01:52
at 2013-05-01T01:52
By Agatha
at 2013-05-01T17:46
at 2013-05-01T17:46
By Daniel
at 2013-05-02T01:27
at 2013-05-02T01:27
By Callum
at 2013-05-05T23:37
at 2013-05-05T23:37
By Brianna
at 2013-05-06T07:28
at 2013-05-06T07:28
By Gilbert
at 2013-05-09T17:17
at 2013-05-09T17:17
Related Posts
小熊維尼歷年大集合-2000片(極小片)
By Annie
at 2013-04-07T19:16
at 2013-04-07T19:16
Koutack
By Callum
at 2013-04-07T14:40
at 2013-04-07T14:40
有關迷你拼的密合度
By Lauren
at 2013-04-05T16:55
at 2013-04-05T16:55
ProjectEuler 421 Prime factors of n^15
By Edith
at 2013-04-02T10:40
at 2013-04-02T10:40
有推薦買框的壓克力板的店嗎?
By Charlie
at 2013-03-29T12:22
at 2013-03-29T12:22